Las propiedades coligativas no guardan ninguna relación con el tamaño ni con cualquier otra propiedad de los solutos.
Son función sólo del número de partículas y son resultado del mismo fenómeno: el efecto de las partículas de soluto sobre la presión de vapor del disolvente (Ver Figura superior).
Las cuatro propiedades coligativas son:
DESCENSO RELATIVO DE LA PRESIÓN DE VAPOR
La presión de vapor de un disolvente desciende cuando se le añade un soluto no volátil. Este efecto es el resultado de dos factores:
- la disminución del número de moléculas del disolvente en la superficie libre
- la aparición de fuerzas atractivas entre las moléculas del soluto y las moléculas del disolvente, dificultando su paso a vapor
Presión de vapor
|
disolvente puro
|
disolución
|
|
|
Cuanto más soluto añadimos, menor es la presión de vapor observada. La formulación matemática de este hecho viene expresada por la observación de Raoult (foto de la izquierda) de que el descenso relativo de la presión de vapor del disolvente en una disolución es proporcional a la fraccion molar del soluto (Ver figura inferior). |
|
Si representamos por P la presión de vapor del disolvente, P' la presión de vapor de la disolución y Xs la fracción molar del soluto, la ley de Raoult se expresa del siguiente modo:
Cuando se trabaja con disoluciones diluidas como las biológicas, cuya molalidad oscila entre 0 y 0,4, se puede utilizar una fórmula aproximada. Si por ejemplo, la molalidad m = 0,4 hay 0,4 moles de soluto en 1000 g de agua, o lo que es lo mismo, 0,4 moles de soluto por cada 55,5 moles de agua, ya que 1000 g de agua (peso molecular =18) son 55,5 moles:
Por otro lado, la fracción molar del soluto
(Xs) es:
La
temperatura de ebullición de un líquido es aquélla a la cual
su presión de vapor iguala a la atmosférica (Figura de la derecha). Cualquier disminución en la presión de vapor (como al añadir un soluto no volátil) producirá un aumento en la temperatura de ebullición (Ver Figura de la tabla). La elevación de la temperatura de ebullición es proporcional a la fracción molar del soluto. Este aumento en la temperatura de ebullición (DTe) es proporcional a la concentración molal del soluto:
DTe
= Ke m
La constante ebulloscópica (Ke)
es característica de cada disolvente (no depende de la naturaleza
del soluto) y para el agua su valor es 0,52 ºC/mol/Kg. Esto significa
que una disolución molal de cualquier soluto no volátil en agua
manifiesta una elevación ebulloscópica de 0,52 º C. |
Diagrama de fases
|
Algunas constantes ebulloscópicas
|
La temperatura de congelación de las disoluciones es más baja que la temperatura de congelación del disolvente puro (Ver Figura de la tabla). La congelación se produce cuando la presión de vapor del líquido iguala a la presión de vapor del sólido. Llamando Tc al descenso crioscópico y m a la concentración molal del soluto, se cumple que:
DTc
= Kc m
siendo Kc la constante crioscópica del disolvente.
Para el agua, este valor es 1,86 ºC/mol/Kg. Esto significa que las disoluciones
molales (m=1) de cualquier soluto en agua congelan a -1,86 º C.
Diagrama de fases
|
Algunas constantes crioscópicas
|
La presión osmótica es la propiedad coligativa más importante por sus aplicaciones biológicas, pero antes de entrar de lleno en el estudio de esta propiedad es necesario revisar los conceptos de difusión y de ósmosis.
Difusión es el proceso mediante el cual las moléculas del soluto tienen a alcanzar una distribución homogénea en todo el espacio que les es accesible, lo que se alcanza al cabo de cierto tiempo (Figura de la izquierda). En Biología es especialmente importante el fenómeno de difusión a través de membranas, ya que la presencia de las membranas biológicas condiciona el paso de disolvente y solutos en las estructuras celulares (Figura de la derecha).
La presencia de una membrana separando dos medios diferentes impone ciertas restricciones al proceso de difusión de solutos, que dependerán fundamentalmente de la relación entre el diámetro de los poros de la membrana y el tamaño de las partículas disueltas. Las membranas se clasifican en cuatro grupos :
- impermeables: no son atravesadas ni por solutos ni por el disolvente
- semipermeables: no permiten el paso de solutos verdaderos, pero sí del agua
- dialíticas: son permeables al agua y solutos verdaderos, pero no a los solutos coloidales
- permeables: permiten el paso del disolvente y de solutos coloidales y verdaderos; sólo son impermeables a las dispersiones groseras.
impermeables
|
semipermeables
|
dialíticas
|
permeables
|
|
|
En Biología y en Fisiología, al hablar de disolvente nos referimos al agua, pero los solutos pueden ser:
- coloidales (proteínas, polisacáridos)
- verdaderos de tipo molecular (glucosa, urea)
- verdaderos de tipo salino (NaCl, KHCO3)
|
|
|
Se define la presión osmótica como la tendencia a diluirse de una disolución separada del disolvente puro por una membrana semipermeable (Figura central de la tabla). Un soluto ejerce presión osmótica al enfrentarse con el disolvente sólo cuando no es capaz de atravesar la membrana que los separa. La presión osmótica de una disolución equivale a la presión mecánica necesaria para evitar la entrada de agua cuando está separada del disolvente por una membrana semipermeable (Figura derecha de la tabla).
Para medir la presión osmótica se utiliza el osmómetro (Figura de la derecha), que consiste en un recipiente cerrado en su parte inferior por una membrana semipermeable y con un émbolo en la parte superior. Si introducimos una disolución en el recipiente y lo sumergimos en agua destilada, el agua atraviesa la membrana semipermeable y ejerce una presión capaz de elevar el émbolo hasta una altura determinada. Sometiendo el émbolo a una presión mecánica adecuada se puede impedir que pase el agua hacia la disolución, y el valor de esta presión mecánica mide la presión osmótica.
Las leyes que regulan los valores de la presión osmótica para disoluciones muy diluídas (como las que se manejan en Biología) son análogas a las leyes de los gases. Se conocen con el nombre de su descubridor Jacobus H. Van t'Hoff (fotografía de la izquierda), premio Nobel de Química en 1901, y se expresan mediante la siguiente fórmula:
p=
m R T
donde p representa la
presión osmótica, m es la molalidad de la disolución,
R es la constante universal de los gases y T es la temperatura
absoluta.Si comparamos la presión osmótica de dos disoluciones podemos definir tres tipos de disoluciones:
- disoluciones isotónicas son aquéllas que manifiestan la misma presión osmótica que la disolución de referencia
- disoluciones hipotónicas son aquéllas que manifiestan menor presión osmótica que la disolución de referencia
- disoluciones hipertónicas son aquéllas que manifiestan mayor presión osmótica que la disolución de referencia
medio isotónico
|
medio hipotónico
|
medio hipertónico
|
|
|
|
|
|
No hay comentarios:
Publicar un comentario